*100_005_H-Functions_ HMAC

Mid Term Exam (MTE) will be held on 28-th of October, at 17:30 by Zoom.

Please participate with your own computers with installed Octave and my .m files.

During the MTE you must solve 2 problems:

1. Diffie-Hellman Key Agreement Protocol - DH KAP.

2. Man-in-the-Middle Attack (MiMA) for Diffie-Hellman Key Agreement Protocol - DH KAP.
The problems are presented in the site:

imimsociety.net

In section 'Cryptography":

Cryptography (imimsociety.net)

Please register to the site and after that you receive 10 Eur virtual money to purchase the problems.
For registration you should input the first 2 letters of your Surname and full Name, e.g. John Smith
Should register as Sm John.

Please purchase the only one problem at a time.

If the solution is successful then you are invited to press the green button [Get reward].
No any other declaration about the solution results is required.
If the solution failed, then you must press the button [Return] in the top on the left side.

Then 'Knowledge bank' will pay you the sum twice you have paid.
So, if the initial capital was 10 Eur of virtual money and you buy the problem of 2 Eur, then if the solution is correct
your budget will increase up to 12 Eur.

You can solve the problems in imimsociety as many times as you wish to better prepare for MTE.
| advise you to try at first to solve the problem in 'Intellect' section to exercise the brains.

It is named as '"WOLF, GOAT AND CABBAGE TRANSFER ACROSS THE RIVER ALGORITHM'.
< https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html>

Diffie-Hellman Key Agreement

Protocol - DH KAP
il $
Alice Koy Agrows :; ;‘ Pretoced Bob Man-in-the Midle (MIM) attack for
Crim vocoet oy Ditfie-Hellman Key Agreement Protocol (KAP)
((Y n
- Aliee Vo Bob
\
u
Diffic & Helbman Receive the 2015
Turing Award
€2.00 €4.00 €2.00

Cryptography: information
confidentiality, integrity, authenticity, person identification

Symmetric cryptography Asymmetric cryptography 1976

Asymmetric encryption

Qummaoatricr ancrrnuntinn:

100_005_H-Functions_HMAC Page 1

https://imimsociety.net/en/
https://imimsociety.net/en/14-cryptography
https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html

Asymmetric encryption
E-signature - Public Key Infrastructure - PKI

Blockchain, Cryptocurrecy, E-money

Symmetric encryption:
block ciphers
stream ciphers

. . E-voting
H-functions, Message digest
’ I Digital Rights Management - DRM (Marlin
HMAC H-Message Authentication Code Etf g & ()
A cryptographic hash function is a special class of hash function that has ‘ ﬂl 1
certain properties which make it suitable for use in cryptography. Itis a M W@ ¢ Zﬁ”g

mathematical algorithm that maps data of arbitrary finite size to a bit
string of a fixed size (a hash function) which is designed to also be a one- h = Hl (M)
way function, that is, a function which is infeasible to invert. R
The only way to recreate the input data from an ideal cryptographic hash \ h (=236 g;fs
function's output is to attempt a brute-force search of possible inputs to [h \ = 2K gﬁs
see if they produce a match.

The input data is often called the message, and the output (the hash =X hex V)l/[\/l/tg_

value or hash) is often called the message digest or simply the digest.

From <https://en.wikipedia.org/wiki/Cryptographic_hash function> OﬂOUL — 0[/) = Dﬂ/

0010, = 2\, E 24

- - = - \‘
1000y = Gve 9,
10 4% = A, 4010
o 4 o _
110, = | E |= 14,

4’[4/{b5 ‘Fh =AS

Cryptographic hash functions have many information-security applications, notably in digital
signatures, message authentication codes (HMACs), and other forms of authentication. They
can also be used as ordinary hash functions, to index data in hash tables, for fingerprinting, to
detect duplicate data or uniquely identify files, and as checksums to detect accidental data
corruption. Indeed, in information-security contexts, cryptographic hash values are
sometimes called (digital) fingerprints, message digest or just hash values, even though all
these terms stand for more general functions with rather different properties and purposes.

M= wessage HM) =h N .
mefody" he lo) " Hi o1} —dar} Jamzss

Przimnge

jmggz

6B —= 256 hte

manat — nin 2

100_005_H-Functions_HMAC Page 2

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Bit_string
https://en.wikipedia.org/wiki/Bit_string
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Message_authentication_codes
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://en.wikipedia.org/wiki/Checksum

{68 —= 256 bt

Wn&(—to — ope

HM:)=H(M:)=H(M:)=...= h,
For gve h, is lM‘jZ%(/tZZé Zo cﬁm/ a1y M: %7%”’7

H(Mi) = h1
Input Digest
cryptographic DFCD 3454 BBER 788a 7512 | 40 Hex numbers = 160 bits
Fox . Hash > 696c 24p9 7009 CcA99 2D17
function é H A 1
The red fox cryptographic AN
k 0086 46BB FB7D CBE2 823C
i Sate ol ’ hash > ACC7 6CD1 90B1 EEGE 3ABC * 160
the blue dog function 5(///4’[s £0 1| —= <f0 {(}
.40 {
The red fox cryptographic A &?% %ﬁ
: 8FDS 7558 7851 4F32 D1C6 Vé@pgg
Jumps oL .) > 76B1 79A9 ODA4 AEFE 4819
the blue dog function
51 Bintolay Zgﬁ

The red fox cryptographic A

FCD3 7FDB 5AF2 C6FF 915F
jumps cevr ——> hash o ZZn
the biuie dog farction D401 COA9 7D9A 46AF FB45
The red fox cryptographic
. S8ACA D682 D588 4C75 4BF4
e » —— > 1799 7D88 BCFS 92B9 6A6C
the blue dog function

A cryptographic hash function (specifically SHA-1) at work. A small change in the input (in the
word "over") drastically changes the output (digest). This is the so-called avalanche effect.

Properties

It is quick to compute the hash value for any given finite message.

A small change to a message should change the hash value so extensively that the new hash value
appears uncorrelated with the old hash value.

Security properties presented below.

Most cryptographic hash functions are designed to take a string of any finite length as input and
produce a fixed-length hash value.

A cryptographic hash function must be able to withstand all known types of cryptanalytic attack.
In theoretical cryptography, the security level of a cryptographic hash function has been defined
using the following properties:

Pre-image resistance

Given a hash value h it should be difficult to find any message M such that h = H(M). This concept
is related to that of one-way function. Functions that lack this property are vulnerable to

first preimage attacks.

Second pre-image resistance

100_005_H-Functions_HMAC Page 3

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Avalanche_effect
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Preimage_attack

- an input M it should be difficult to find (different) input M, such that H(M,) = H(M,).
Functions that lack this property are vulnerable to second-preimage attacks.

Collision resistance

It should be difficult to find - two different messages M; and M, such that H(M;) = M(M,).
Such a pair is called a cryptographic hash collision. This property is sometimes referred to

as strong collision resistance. It requires a hash value at least twice as long as that required for
preimage-resistance; otherwise collisions may be found by a birthday attack.l2

These properties form a hierarchy, in that collision resistance implies second pre-image
resistance, which in turns implies pre-image resistance, while the converse is not true in
general. Bl

The weaker assumption is always preferred in theoretical cryptography, but in practice, a hash-
functions which is only second pre-image resistant is considered insecure and is therefore not
recommended for real applications.

Informally, these properties mean that a malicious adversary cannot replace or modify the input
data without changing its digest.

Thus, if two strings have the same digest, one can be very confident that they are identical.

M M M;=? Mi=? My=?
h
H(M) =, h =H(M;)=H(M,) = |» H(M;)=H(M,) = 4
Preimage resistance Second preimage Collision resistance

resistance

Loan contract

My = qo00€ Loan. M, 54 wbid loon contrat.
h=H(M); |hl= 256 btz
f: Pricy=x —= 5S¢ ”(Pfk/{; 0’): GJV»:('Z\; Sa)
My, 6/h, FulCa To s stcond precmage M,
To creqle loan contipe for 100000€
such that H(M,) =H,) =h
Thewr the watid siguature on My is lid abeo o M, |

ﬁ: h="H(M,;) 4’_,/‘4/9—/—— ClvivnnTo Alics 2o p
(T (Ao la. 2.0) = True A O £ orrcdod il 47#7DEN

100_005_H-Functions_HMAC Page 4

https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-KatzLindell-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-FOOTNOTERogawayShrimpton2004in_Sec._5._Implications-3
https://en.wikipedia.org/wiki/Adversary_(cryptography)

B bh=HM) — MasOr clainito plics 20 pay
Ve (Gg, sy Py) = True 100 OpO & (yrstzed a)/ 7ﬂmé>

hd28.m - computing 28 bit length h-value in decimal form
h28.m - computing 28 bit length h-value in hexadecimal form
sha256.m - computing 256 bit length h-value in hexadecimal form

>> sha256('RootHash PrevHash 737327631")

ans = FAAE534CD226FAF7998C8424B348E020BA80639A687E93A0B8C5130EDC51E6DE
>> h28('RootHash PrevHash 737327631")

ans = C51E6DE

>> hd28('RootHash PrevHash 737327631")

ans = 206694110

>> dec2bin(ans)

ans = 1100010100011110011011011110

>> dec2hex(206694110)

ans = C51E6DE

lllustration nonee = l\ﬁj 72275 ;1
>> sha256('RootHash PrevHash 737327631') h2s(?.. . °)
ans = FAAES34CD226FAF799] 8C8424B348E020BAS0639A687E93A0BSC5130ED] C51E6DE

C51E6DE

>> sha256('RootHash PrevHash 737327632')

ans = B856211DF2EE15E30AB770C1A43CEO14ECFES573182AFD885B28D96854DBC5F21
>> sha256('RootHash PrevHash 737327633')

ans = 9C18C764E347A58E57AC3F7A3C2874D5889A0E802699FEA47EEFF8CO3BFEDAG9

>> sha256('RootHash PrevHash 737327634")

ans = 32B2108A70C39565485CCED9C948E5B7A0027D1EE98642E09D5E4D3D84E16814
>> sha256('RootHash PrevHash 737327635')

ans = I281AC77F5C9AEDEEFFDEDEA85DCEA1C5D76E4222ABSOD8A456AEBZAA9EBOF44

0, =oooo, F, = 1111, h2g (', -) > # hex numb.
hd28 (-7) = decimal num.

Commitment

An illustration of the potential use of a cryptographic hash is as follows: ,)0 — /(/]D
Alice poses a tough math problem to Bob and claims she has solved it.

Bob would like to try it himself, but would yet like to be sure that Alice is not p # /K//D
bluffing.

Elementary: Sherlock Holms and docto Watson

Therefore, Alice writes down her solution, computes its hash and tells Bob the hash
value (whilst keeping the solution secret).

Then, when Bob comes up with the solution himself a few days later, Alice can
prove that she had the solution earlier by revealing it and having Bob hash it and
check that it matches the hash value given to him before. (This is an example of a
simple commitment scheme; in actual practice, Alice and Bob will often be

100_005_H-Functions_HMAC Page 5

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Commitment_scheme

computer programs, and the secret would be something less easily spoofed than a
claimed puzzle solution).

Verifying the integrity of files or messages
Main article: File verification !
An important application of secure hashes is verification of message integrity. ‘P 7&_“{))
- . I
Determining whether any changes have been made to a message (or a file), \ B
AW #HIE
h h

for example, can be accomplished by comparing message digests calculated

before, and after, transmission (or any other event).

For this reason, most digital signature algorithms only confirm the 55{14 (PrK,, 1’5) %?év‘gw (7 Lﬂa,)
authenticity of a hashed digest of the message to be "signed". Verifying the

authenticity of a hashed digest of the message is considered proof that the

message itself is authentic.

MD5, SHA1, or SHA2 hashes are sometimes posted along with files on

websites or forums to allow verification of integrity.[®l This practice

establishes a chain of trust so long as the hashes are posted on a site

authenticated by HTTPS.

Password verification[edit]

Main article: password hashing

A related application is password verification (first invented by Roger Needham).
Storing all user passwords as cleartext can result in a massive security breach if
the password file is compromised. One way to reduce this danger is to only store
the hash digest of each password. To authenticate a user, the password
presented by the user is hashed and compared with the stored hash. (Note that
this approach prevents the original passwords from being retrieved if forgotten
or lost, and they have to be replaced with new ones.) The password is often
concatenated with a random, non-secret salt value before the hash function is
applied. The salt is stored with the password hash. Because users have different
salts, it is not feasible to store tables of precomputed hash values for common
passwords. Key stretching functions, such as PBKDF2, Bcrypt or Scrypt, typically
use repeated invocations of a cryptographic hash to increase the time required
to perform brute force attacks on stored password digests.

In 2013 a long-term Password Hashing Competition was announced to choose a
new, standard algorithm for password hashing.

Proof-of-work

Main article: Proof-of-work system

A proof-of-work system (or protocol, or function) is an economic measure to

deter denial of service attacks and other service abuses such as spam on a network by
requiring some work from the service requester, usually meaning processing time by a
computer. A key feature of these schemes is their asymmetry: the work must be
moderately hard (but feasible) on the requester side but easy to check for the service
provider.

One popular system — used in Bitcoin mining and Hashcash — uses partial hash
inversions to prove that work was done, as a good-will token to send an e-mail. The
sender is required to find a message whose hash value begins with a number of zero

hite Tha aviaraaca winrlk that candar naade +A narfAarm in Ardar +A find A valid maceaan ic

100_005_H-Functions_HMAC Page 6

https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/File_verification
https://en.wikipedia.org/wiki/Message_integrity
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA1
https://en.wikipedia.org/wiki/SHA2
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-6
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/w/index.php?title=Cryptographic_hash_function&action=edit§ion=6
https://en.wikipedia.org/wiki/Password_hashing
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Roger_Needham
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Precomputation
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Brute_force_attack
https://en.wikipedia.org/wiki/Password_Hashing_Competition
https://en.wikipedia.org/wiki/Proof-of-work_system
https://en.wikipedia.org/wiki/Denial_of_service
https://en.wikipedia.org/wiki/Bitcoin_mining
https://en.wikipedia.org/wiki/Hashcash

inversions to prove that work was done, as a good-will token to send an e-mail. The
sender is required to find a message whose hash value begins with a number of zero
bits. The average work that sender needs to perform in order to find a valid message is
exponential in the number of zero bits required in the hash value, while the recipient
can verify the validity of the message by executing a single hash function. For instance,
in Hashcash, a sender is asked to generate a header whose 160 bit SHA-1 hash value
has the first 20 bits as zeros. The sender will on average have to try 2'° times to find a
valid header.

File or data identifier

A message digest can also serve as a means of reliably identifying a file;

several source code management systems, including Git, Mercurial and Monotone,
use the shalsum of various types of content (file content, directory trees, ancestry
information, etc.) to uniquely identify them. Hashes are used to identify files

on peer-to-peer filesharing networks.

Pseudorandom generation and key derivation
Hash functions can also be used in the generation of pseudorandom bits, or
to derive new keys or passwords from a single secure key or password.

As of 2009, the two most commonly used cryptographic hash functions
were MD5 and SHA-1. However, a successful attack on MD5 broke Transport

Layer Security in 2008.

February 2005, an attack on SHA-1 was reported that would find collision in about
25° hashing operations, rather than the@xpected for a 160-bit hash function. In
August 2005, another attack on SHA-1 was reported that would find collisions in
@aperations. Though theoretical weaknesses of SHA-1 exist, 24115l no collision (or
near-collision) has yet been found. Nonetheless, it is often suggested that it may be
practical to break within years, and that new applications can avoid these problems by
using later members of the SHA family, such as SHA-2.

ﬁazoro/iwﬁ o bzrfhd@lg{ mda/(7 is wol ré%ﬁreﬁ/
total siov ol 2//‘50 \wreraer?s 9@1 M//é§§ﬂj€, A7,
V7 s ﬁwyﬁh 10 ccarm \[2™° = 2 OVWM%

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash
functions designed by the United States National Security Agency (NSA).E

From <https://en.wikipedia.org/wiki/SHA-2>

SHA-2 includes significant changes from its predecessor, SHA-1.

The SHA-2 family consists of six hash functions with digests (hash values) V) 25
that are 224, 256, 384 or 512 bits:

SHA-224, SHA-256, SHA-384, SEBEBE, SHA-512/224, SHA-512/256.

100_005_H-Functions_HMAC Page 7

LM

https://en.wikipedia.org/wiki/Bitcoin_mining
https://en.wikipedia.org/wiki/Hashcash
https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Mercurial_(software)
https://en.wikipedia.org/wiki/Monotone_(software)
https://en.wikipedia.org/wiki/Sha1sum
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Filesharing
https://en.wikipedia.org/wiki/Pseudorandom
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-14
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-15
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

However, to ensure the long-term robustness of applications that use hash functions, there
was a competition to design a replacement for SHA-2.

On October 2, 2012, Keccak was selected as the winner of the NIST hash function
competition.

A version of this algorithm became a FIPS standard on August 5, 2015 under the name
SHA-3 <--> keccak-256 --> in Ethereum

HMAC - H Message Authentication Code

Use in building other cryptographic primitives: symmetric e-signature realization ,) o
Hash functions can be used to build other cryptographic primitives. YWKOWWﬂﬂZLW Mh%bd&%ﬁ&[ﬁé

.

For these other primitives to be cryptographically secure, care must be taken to = AMMM%W%ﬂM
build them correctly.

Message authentication codes (MACs) (also called keyed hash functions) are often jmf%mf%{

built from hash functions. HMAC is such a MAC.

Keyed-hash message authentication code (HMAC) is a specific type of message authentication code (MAC)
involving a cryptographic hash function (hence the 'H') in combination with a secret cryptographic key.

As with any MAC, it may be used to simultaneously verify both the data integrity and the authentication of
a message.

Any cryptographic hash function, may be used in the calculation of an HMAC.

The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash
function, the size of its hash output, and on the size and quality of the key.

Symmetric - Secret Key Encryption - Decryption

. Plaintext i r Ciphertext : Plaintext @
& " Open = "

Sender Encrypt Communication Deerypt Recipient
Channel

Same key is used to encrypt
and decrypt message

k%

Shared Secrat Key

Integrity and authenticity by computing h-value and signing
HMAC based symmetric e-signature

d— O— &
-f

| MESSAGE | ‘ | MESSAGE |

N O

100_005_H-Functions_HMAC Page 8

https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Cryptographic_strength
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/HMAC

| MESSAGE | [MESSAGE]
MAC [mMESsAGE | MAC
Key (K)— | Aigorithm Key (k) — Algorithm
.)
b WAE > (=)« AT
v
MAC: If the same MAC is fouqd: then
Message Authentication Code ::;;ﬁ;sg?:c':ezume“t‘c and
Else: something is not right.

Asymmetric cryptography

PP =(p, 9).

Strong prime number p in real cryptography is of order : p ~ 22048
Strong prime number p in our examples is of order: p ~ 228

>> p=genstrongprime(28)

Key Key generation
Generation
Program e Randomly choose a private key X with 1 < X < p— 1
o ubiic ® A Privace e The private key is PrK = x = randi(p-l)
-y X
PuKa=a PrKa = X Compute d = @ mod p.

* The public key is PUK = a = g* mod p.

Trezor Hardware Wallet (Official) | Bitcoin & 8

. TREZOR
Crypto Security
The safest cold storage wallets for crypt (e
security and financial independence. Easily _ e
use, store, and protect Bitcoins. S?CUF@ coins
trezor.io with Trezor aTm.

C:\Users\Eligijus\Documents\500 SOFTAS App 2023\Python 3.9.1\111.ECDSA-secp256k1_Python.Edv.Rep\ECC

100_005_H-Functions_HMAC Page 9

https://trezor.io/
https://trezor.io/

e C\Users\Eligijus\AppData\Local\Programs\Python\Launcher\py.exe = a X

ECCDS python app
Please input required command:
1 Generate new ECC private and public keys
Export private and public keys
- Export private key
Export public key
Load private key
- Load data file
Sign loaded file
Load public key
Verify signature
- Export signature
Load signature
Draw secp256kl graph in real numbers
- Draw secp256kl graph over finite field

Wo~sNNowm s wN

exit/e - Exit app
Input command:

Till this place

Confidentiality, Integrity and Authenticity by encryption, computing h-value and signing

A vnessage M to be seut 2o I3,

4. Fties agvee. on the conmton secre b Keg (e,

2. /1 em4r1(/v7fé Messoge iting ¢ prmmetiic ehér//z@w alooiithm, 2.4,
AES428: & =AEs(k M), [dlx Ml

3 The HMpc-vabue on 4 is wmpwfm’ D oh = HMAC (K 95")

e <, b :
5 4 Lompuctes HMAC- wlne on &

b = HMAC (L > &)
2. Vw/z’)ézas tecelveo h— valuz |
with computed |

\///FVCI\f h:h‘):{) }

100_005_H-Functions_HMAC Page 10

vyvrev’ Wyrl//(/buwl/l m

V&VCI{ lr):[/)'):{ jl 7}
2. Dectypis g %e ke

Dlle, ¢) =M.

In the case of Asymmetric cryptography:
Confidentiality Integrity and Authenticity is realized by encryption, computing h-value and signing

H] mgsgggrg /‘4 'i'D b& S@M% ZLV @ .

4. Vreties agvee. on e common seare & Keg e

2. /1 @W&rt//q'fé Message Lring ¢ prmmetiic ehé,,//z‘;pm alooiithm, 2.4,
AES428: & =AEs(k, M), (4l x |u]

3, The h-value 4 is wmpwfm’ D oh =shazss (4)

Y, The ﬁfﬁwﬁfm ts /;Zﬁca&fﬁ% b Sigm(PrKAj(n): 6’?(#’, 9)

fI: Blku=%; R =a. R AKkg=Y; Pukg=b.
d) Q = CVJ%) PMKA‘—'O.

1, [@Wf)ﬁ%h—l%fwz 0(4
h ﬁé%aZS‘é(d)

2. me)lwﬁ %’gnﬂd’/ﬂ/&e on b
\/er(PuKA,é”/hjzi , r‘ g(
S.Deéky/ﬁﬁ g ééz}e le

Dlle, d) =M.
@ ﬁ Telecommunik %
T " f
Koy 1 Kez

KAB:M — K :M:KBA

m — meSags

100_005_H-Functions_HMAC Page 11

>> sha256('RootHash PrevHash 737327631')

ans = F4AAE534CD226FAF7998C8424B348E020BA80639A687E93A0B8C5130EDC51E6DE
>> h28('RootHash PrevHash 737327631')

ans = C51E6DE

>> hd28('RootHash PrevHash 737327631")

ans = 206694110

>> dec2bin(ans)

ans =1100010100011110011011011110

>> dec2hex(206694110)

ans = C51E6DE

Hash functions based on block ciphers

There are several methods to use a block cipher to build a cryptographic hash
function, specifically a one-way compression function.

The methods resemble the block cipher modes of operation usually used for
encryption.

Many well-known hash functions, including MD4, MD5, SHA-1 and SHA-2 are built
from block-cipher-like components

HMAC can be constructed form the block cipher using cipher block chaining 72\ ES’(__ CBC

(CBC) mode of operation.
M — 4o by %MO[

&= Aficﬁc(k, M)

CBC-MAC

Cipher block chaining message authentication code (CBC-MAC) is a
technique for constructing a message authentication code from a block
cipher. The message is encrypted with some block cipher algorithm in CBC
mode to create a chain of blocks such that each block depends on the proper
encryption of the previous block.

This interdependence ensures that a change to any of the plaintext bits will

ralice the final encrunted hinck tn rhanoe in a wav that rannnt he nredirted

25¢

*100_005_H-Functions_HMAC Page 12

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2

encryption of the previous block.
This interdependence ensures that a change to any of the plaintext bits will
cause the final encrypted block to change in a way that cannot be predicted

or counteracted without knowing the key to the block cipher. kl=256b = B; = ¢: =256
From <https://en.wikipedia.org/wiki/CBC-MAC> M: 81 [82 | ... [B4)

{ aes. cBe(t,M

G [é 2 [---Tevw]
hMkc= C, @ C@, . OC,="
Plaintext Plaintext Plaintext bitwice XoRing
T T Sestrinsseass LI
Initialization Vector (1V) % $
I — = —
block cipher block cipher block cipher
Key encryption Kay encryption Key encryption
NENNNEENEEEEN (NENEEENEEEEEE] EEENEEENEEEEN
Ciphertext G Ciphertext C; Ciphertext Cn

Cipher Block Chaining (CBC) mode encryption

Chosetr Vétintext? AHack

A |
E,,, (ks m) = C Q@mryﬁf o B H, 4. (kj’ C)Q; h
Hopo (Kgc)=h) hash Ch=h i ok

2) Dk, a): W

*100_005_H-Functions_HMAC Page 13

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/CBC-MAC

